AUTOMATION OF FIBER COMPOSITE MANUFACTURING PROCESS

(In the partial fulfillment for the course of Mechatronics, ME5643) (Group 8)

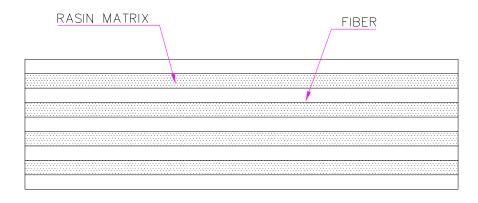
Duc Anh Sang Yoon Lee Chandresh Dubey

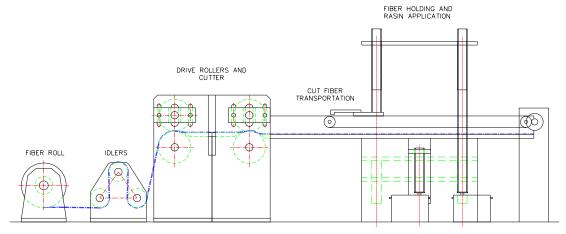
Prof. V. Kapila
Polytechnic University

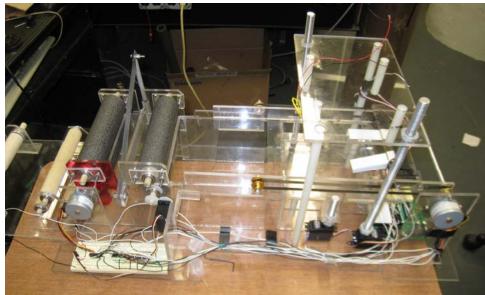
Overview

- Introduction
- Objective
- Mechanical Design and Layout
- Electrical/Electronic Design
- PBASIC Code
- Cost Estimation
- Limitations
- Future developments
- Conclusion
- Acknowledgement

Introduction



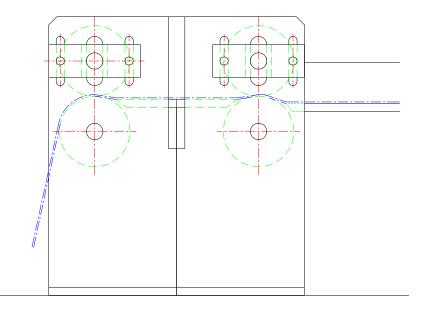


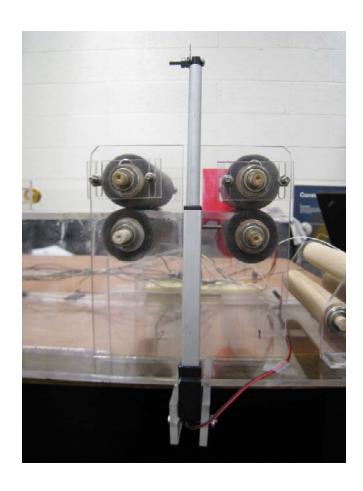


Objective

- Device a prototype model demonstrating automation of fiber composite material manufacturing process.
- Prototype should be capable of cutting pieces up to length of 6 inches.
- Up to 30 mm composite stack should be handled.

Mechanical Design and Layout

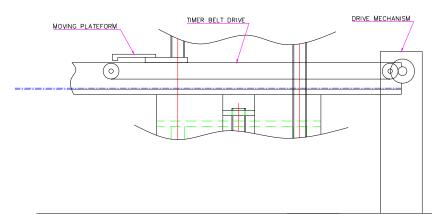




Mechanical Design

(Drive Rollers and Cutter)

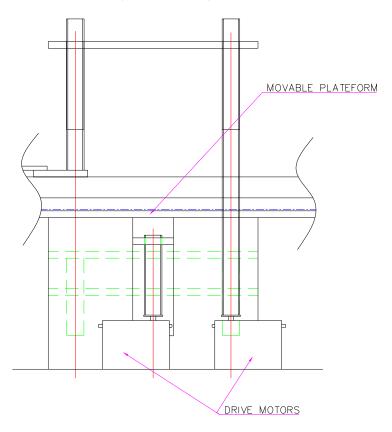
DRIVE ROLLERS AND CUTTER

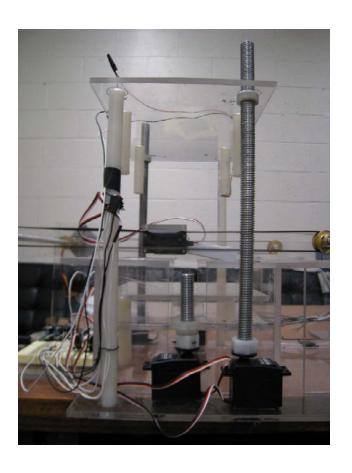


Mechanical Design

(Fiber Transportation)

CUT FIBER TRANSPORTATION





Mechanical Design

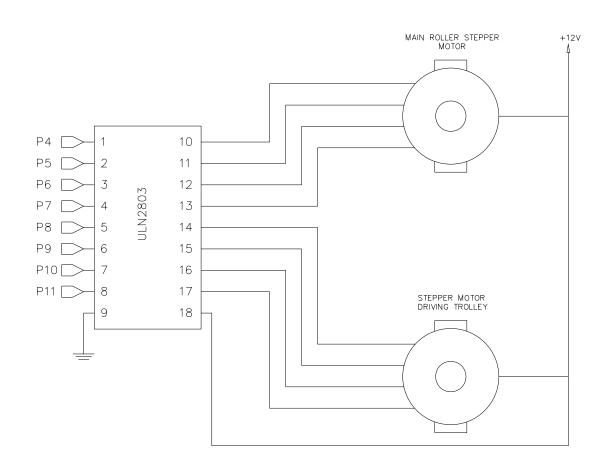
(Fabric Holding and Resin Application)

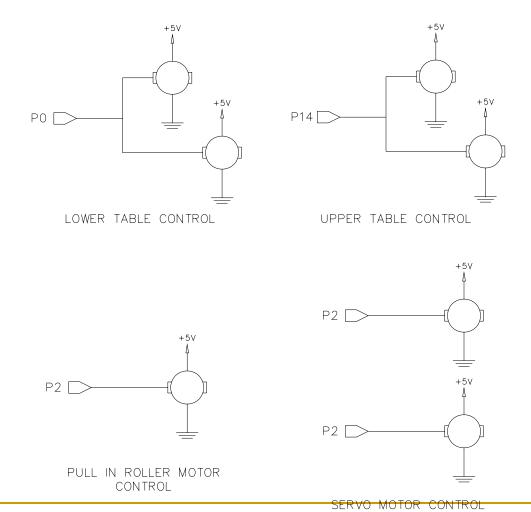
FIBER HOLDING AND RASIN APPLICATION

Electrical/Electronic Design

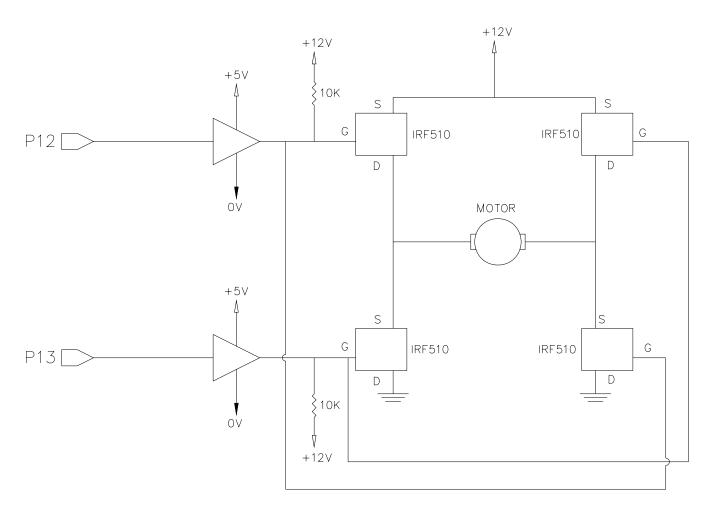
Key Hardware

- Stepper motors
- 2. Servomotors (continuous and standard)
- Linear Actuator
- Pressure sensor
- 5. Stepper motor drive IC (ULN2803)
- 6. Mosfets
- 7. 12V power supply etc.




Circuit Diagram

(Stepper Motor – Main roller and transport drive)


Circuit Diagram

(Servo Motors - Pull roller, transport and holding platform)

Circuit Diagram

(Linear Actuator - Cutter)


```
' ($STAMP BS2)
' {$PBASIC 2.5}
'----[ I/O Definitions ]-------
OUTPUT O
OUTPUT 2
OUTPUT 3
OUTPUT 14
OUTPUT 15
StpsPerRev 01 CON 48
                                        ' One revolution
StpsPerRev_02 CON 48
' phase control outputs
Phase 01
      VAR OUTB
Phase 02 VAR OUTC
     VAR Byte
х
                                          ' loop counter
idx VAR Byte
     VAR Word
                                          ' RCtime
tau
stpIdx VAR Nib
                                          ' step pointer
                                          ' delay for speed control
stpDelay VAR Byte
```

```
'----[ Subroutine - Stepper Motor 01 ]------
 Steps 01 DATA %0011, %0110, %1100, %1001
DIRB = %1111
                                                              ' make P4..P7 outputs
 stpDelay = 15
FOR idx = 1 TO 3*StpsPerRev 01
 stpIdx = stpIdx + 1 // 4
 READ (Steps 01 + stpIdx), Phase 01
                                                              ' output new phase data
 PAUSE stpDelay
 PULSOUT 2, 700
NEXT
'----[ Subroutine - Linear Motor ]-------
FOR x = 1 TO 2
HIGH 12
PAUSE 13000
LOW 12
PAUSE 10
HIGH 13
PAUSE 13000
LOW 13
NEXT
PAUSE 200
```

```
'----[ Subroutine - Stepper Motor 02 ]------
Steps 02 DATA %0011, %0110, %1100, %1001
DIRC = %1111
 stpDelay = 15
FOR idx = 1 TO 255
   stpIdx = stpIdx + 3 // 4
                                                                     ' Run forward
   READ (Steps 02 + stpIdx), Phase 02
                                                                     ' output new phase data
   PAUSE stpDelay
NEXT
PAUSE 100
FOR idx = 1 TO 200
   stpIdx = stpIdx + 1 // 4
                                                                     ' Run reverse
   READ (Steps 02 + stpIdx), Phase 02
                                                                     ' output new phase data
   PAUSE stpDelay
NEXT
PAUSE 1000
                                                                     ' Pause for holding the cut piece
FOR idx = 1 TO 55
   stpIdx = stpIdx + 1 // 4
                                                                     ' Run back to start position
   READ (Steps 02 + stpIdx), Phase 02
   PAUSE stpDelay
NEXT
PAUSE 100
```

```
|-----[ Subroutine - Two Servo Motor ]------
FOR x = 1 TO 500
PULSOUT 3, 500
PULSOUT 15, 1000
PAUSE 10
NEXT
PAUSE 100
FOR x = 1 TO 500
PULSOUT 14, 1000
                                                    ' Upper table goes down
PAUSE 10
NEXT
PAUSE 100
'----[ Subroutine - Pressure Sensor ]------
DO
HIGH 1
PAUSE 3
RCTIME O, 1, tau
PAUSE 100
IF tau > 500 THEN
                                                     ' Threshhold pressure
                                                     ' Upper table goes up
  GOTO TableGoUp
ENDIF
LOOP
```

Limitations

- The model proposed in its current state doesn't provide any means to check the fiber orientation which drastically affects composite material property
- Resin application is to be done manually
- The holding mechanism proposed is slow due to use of threads but can be easily changed to other linear actuators

Future Developments

- Incorporate a sensory system to check fiber orientation as it directly affects the composite strength and sorting out incorrect pieces
- Device the mechanism which would allow differently oriented fibers to be processed serially so that mixed type composites can be produced

Conclusion

- The mechanism operates slowly but satisfactorily.
- It was found that individually the components performed as required but in integrated form synchronization difficulties exist
- The methodology can be easily adopted is simple and adaptive for manufacturing

Acknowledgement

- Prof. N. Gupta (process and design methodology)
- Mr. Alessandro Betti (model making assistance)
- <u>www.paralax.com</u> (circuit and code references)
- <u>www.trossenrobotics.com</u> (robotics components)

Questions???

Thank You

Cost Estimation

Sr. No.	Component Name	Quantity	Cost
1	Basic stamp BOE	1	99.95
2	Linear actuator	1	70
3	Stepper motor	2	21.9
4	Continuous servo	5	64.75
5	Standard servo	2	25.9
6	Mosfets IRF510	4	16
7	Stepper motor driverULN2803	1	1.5
8	Pressure sensor	1	6
9	Acrylic sheet, wooden rod and hardware		50.49
10	Ball Bearings	16	40.8
11	Timing belt	2	17.07
12	Timing belt pulley	4	35.52
13	Gears	6	39.20
14	Nylon rods, nuts etc		47.22
15	Others (Transportation, mailing, taxes etc.)		35.68
Total			571.98